The Ducks – Taking A Different Perspective Part One of Two

Leo Davis is an orchid enthusiast with an eye for detail.  Everyone seems to be aware of and gets excited over the flower of the large flying duck orchid but in the article below, Leo takes a look at a more significant event – the rare fruiting of the duck in South Australia.

TAKING A DIFFERENT PERSPECTIVE 1(The Large Flying Duck Orchid)
Leo Davis

When approaching an iconic orchid like a flying duck orchid the obvious imperative is to emphasise the flying duck image. But as much fun as that can be, we can find and record some other significant aspects of this species.  Do remember to look at all orchid flowers, with or without your camera, from different directions. And don’t forget the leaves.

In the last flowering season at Knott Hill NFR (Oct-Dec 2015) I photographed a double flowered large flying duck (Caleana major) on November 14.  At the bottom of the upper left hand side flower you can see a white stigma (♀ part), sitting at the base of the bowl shaped column. The sticky surface of the stigma is ready to trap a pollinium (a sack of pollen grains), if the correct pollinator arrives, with a pollinium attached. Immediately below is a three lobed the triangular yellow pollinium packet (♂ part), as yet not taken by a pollinator.  The highly sensitive mobile duck shaped labellum, a modified petal, looms above, waiting to slam a visiting insect down onto the pollinium, so attaching it to the back of the insect.

OLYMPUS DIGITAL CAMERA
Caleana major (Flying Duck Orchid) – note the location of the stigma and pollinium

On December 10 I found the same plant, and one adjacent, in FRUIT. This is not often observed in South Australia and it has been suggested that the specific pollinator may be thin on the ground.  I photographed both plants but that of the more advanced plant (shown), with fully withered flowers and plump developing ovaries, interested me more, because it suggested progress towards production of viable seed.

Caleana major fruiting body
Success – Caleana major Fruiting Bodies

I went back on March 9, this year, and was delighted to find and photograph the fruit that had ripened, dried and split, so releasing the dust like seed.  I was prepared for disappointment because the fate of seed pods of many orchid species is to be eaten.  For example for the hyacinth orchid (Dipodiun roseum), across both the 2014-15 and 2015-16 flowering seasons, at Knott Hill, all plants that I found had their seed pods consumed. Kangaroos?

OLYMPUS DIGITAL CAMERA
Dehiscent (splitting of the seed pod to allow dispersal of the seed) Caleana major

Robert Brown established the genus Caleana based upon his description of a specimen of Caleana major (1810).  The type specimen was collected in 1803, at Bennilong Point, the site of the Opera House, so the species is extinct at that site now, of course.

 

February 2016 Winning Photograph

1602 sm PM Caleana major

For our first competition of the year we had five photographs – three of flowers and two of participants on a field trip.  The species represented were David Mangelsdorf’s Calochilus robertsonii (Southern Bearded Orchid); Robert Lawrence’s Pheladenia deformis (Blue Bearded Orchid) and Pauline Meyer’s Caleana major (Flying Duck Orchid) which was the winning photograph.

There is no doubt that the Duck Orchids are very photogenic and that people want to see and photograph them.  When seen the for the first time their small size surprises most.  The flower is no bigger than a thumbnail, perched atop a spindly stalk that may only reach 50cms (20 inches).

Although the rusty red colour of the flower is quite exquisite, this means that it blends in with the surrounding leaf litter and scrub and is not easily spotted.

As species of Heathy Woodlands, in South Australia, it is often found growing in sparse colonies near the base of trees.  Other plants associated with them are banksias, eg Banksia ornata, Eucalyptus baxteri and bracken.  The soil is sandy, often from leached acidic dunes, or gravelly.

Reference:

2008 Department for Environment and Heritage Electronic Flora of South Australia species Fact Sheet: Caleana major R.Br. Available from pa-fact-pafactcaleanamajor.pdf

Bates, R. J., ed. (2011). South Australian Native Orchids. Electronic version, 2011. NOSSA

November 2015 Winning Photograph

November’s theme was hybrids. Orchids, more than any other plant family, are likely to produce natural hybrids. Even though the overall occurrence of natural hybridisation in orchids is low, it occurs often enough to make some species identification challenging.

Hybrids mainly occur between species of the same genera such as Jenny Pauley’s Arachnorchis brumalis x A. conferta

11sm JP Arachnorchis brumalis x conferta
Arachnorchis brumalis x A. conferta

but, less commonly, it can occur between genera as seen with Pauline Meyer’s Caladenia latifolia x A. brumalis

11 sm PM C latifolia X A brumalis
Caladenia latifolia x Arachnorchis brumalis

and her Western Australian photograph of Caladenia x enigma; a hybrid between C. falcata and Drakonorchis barbarossa.

11sm PM Caladenia x enigma
Caladenia x enigma


Jones (2006) states that “Natural hybrids are more common in some genera, such as Arachnorchis, Caladenia and Diuris, than in others.” To this list could be added Thelymitra as seen with both of the winning pictures T. x truncata and T. x irregularis. Interestingly with these two hybrids, the parents are not always the same; the parents for T. irregularis could be T. ixiodies or T. juncifolia with either T. carnea or T. rubra.

11 sm RAL Thelymitra x irregularis.jpg
Thelymitra
x irregularis

A similar situation occurs with T. truncata with the parents consisting of T. juncifolia and any member of the T. pauciflora (including T. albiflora, T. arenaria, T. bracteata, T. brevifolia, T. cyanapicata, T. pauciflora) or of the T. nuda complex.

11 sm RWL Thelymitra x truncata
Thelymitra
x truncata

The conditions necessary for hybridisation are that the parents must grow in the same area, have overlapping flowering time and share the pollinator. Brown et al (2103) make the additional observation – Hybrids are more common between wasp and bee-pollinated species than between two wasp-pollinated species or two bee-pollinated species.   … However, rare hybrids between species using the same pollination strategies, do occasionally occur …

Obviously hybridisation is more likely to occur when there is an abundance of the parent species. This situation can occur when there is mass flowering following fires or good seasonal rains. Site disturbances either through natural causes or clearing can result in increased incidence of hybridisation.

Hybrids are often infertile and will only last for the life of the individual plant but some have the ability to reproduce vegetatively and, provided the conditions remain favourable, may persist for several years.

One situation that can occur is hybrid swarm. When these occur they can make orchid identification challenging. Hybrids share the characteristic of both parents and by careful observation this can be deduced but swarms introduce an added complexity because the hybrid can backcross with either of the parents or cross fertilise with themselves. The result is a wide range of variation which makes orchid identification difficult.

Finally, some orchids will not hybridise even though the conditions are right. This could be due to specific pollinator or possibly chemical or genetic barriers.

References:

Brown et al (2013) Field Guide to the Orchids of Western Australia, Floreat, WA, Simon Nevill Publications

Jeans, Jeffrey & Backhouse, Gary (2006) Wild Orchids of Victoria, Seaford Vic, Aquatic Photographics

Jones, David (1988) Native Orchids of Australia, Frenchs Forest, NSW, Reed Books

Jones, David (2006) A Complete Guide to Native Orchids of Australia including the Islands and Territories, Frenchs Forest, NSW, Reed New Holland

Introduction to Australian Orchidaceae CD-ROM

https://www.anbg.gov.au/cpbr/cd-keys/orchidkey/html/intro-c_hybrid.html   accessed 7th December 2015

Bates, Robert (2011) South Australia’s Native Orchids NOSSA DVD Adelaide

Spotted Pink Sun Orchid – Beautiful, but Only a Hybrid

https://nossa.org.au/2014/09/26/thelymitra-x-irregularis-beautiful-but-only-a-hybrid/ accessed 7th December 2015

 

 

2015 August Winning Photograph

08 RP Arachnorchis cardiochila smOf the five entries this month, three were spider orchids and the winner was from this group. It was Rob Pauley’s Arachnorchis cardiochila (syn Caladenia cardiochila), Heart Lip Spider Orchid which can be found across South Australia and into western Victoria. At one time a specimen was found on Flinders Island, Tasmania but as it was collected in 1947 it is considered extinct in that region.

This lovely flower is quite variable in colour and form.

The heart shape labellum is a distinctive feature of this spider orchid, so it is not surprising that this is reflected in the name. Cardio means heart and chila lip.

What probably is surprising is that the traditional heart shape symbol has come full circle. It had a botanical origin. According to cardiologist Professor Armin Dietz the symbol was originally a stylized vine/ivy leaf as evidenced from paintings on goblets from the 3rd millennium. In the Middle Ages, doctors and anatomists used the shape to represent the heart. As at that time Latin and Greek were both the international languages of scholars, including doctors, the word associated with the symbol was the Greek word kardia (ie cardio) meaning heart. Consequently, by the time Ralph Tate names this species in 1887, the shape has become intrinsically linked with the heart and so it must have appeared to him as an obvious descriptive name.

There are several field guides which give a detailed description of the species including South Australia’s Native Orchids DVD-ROM which is available for sale from NOSSA.

 

References:

http://www.heartsymbol.com/english/index.html accessed 28th August 2015

The texts published on this website are taken from his book “Ewige Herzen – Kleine Kulturgeschichte der Herzbestattungen” (“Eternal Hearts – a short cultural history of heart burials”), published 1998 in MMV Medien und Medizin Verlag, Munich. (English translation by Pauline Liesenfeld.)

http://data.rbg.vic.gov.au/vicflora/flora/taxon/bca2495d-3325-4c1b-b2c3-782566fb6bce accessed 28th August 2015

http://dpipwe.tas.gov.au/Documents/Caladenia-cardiochila-listing-statement.pdf acessed 28th August 2015

 

2015 June Winning Photograph

06 sm PM Arachnorchis argocallaOf the five entries this month, four featured winter orchids. Lorraine Badger entered a Diplodium robustum, whilst Claire Chesson, Robert and Rosalie Lawrence all entered Urochilus sangineus. Though not the winning photographs it was interesting to see the differences between the U. sangineus with one being no taller than the small Acianthus pusillus next to it and another being taller than the rapier sedge.

But the winning photograph was the spring flowering Arachnorchis argocalla (White Beauty Spider Orchid) by Pauline Meyers. This is amongst our most threatened orchids and is dealt with in depth in the Recovery Plan For Twelve Threatened Orchids in the Lofty Block Region of South Australia 2010. This fungi dependent endemic orchid is rated Endangered both at State and National level.

Found in the Southern and Northern Lofty regions, it range has been severely reduced by possibly 80%. Since 1918 no plant has been found south of Adelaide.

Flowering from September to October, it is often found in grassy woodlands often growing on gentle southerly-facing hill slopes. The soil is a clay loam with a high humus content.

This beautiful orchid has one to two non-perfumed white flowers with thickened but not clubbed drooping lateral sepals and petals. The strongly recurved broad labellum is usually white, sometimes crimson, fringed with short teeth.

This is one of our larger spider orchids reaching a height of 60cms. The size of the plant flower and leaf help to distinguish it from other similar appearing orchids such as A. brumalis and albino flowers of A. behrii.

Like many of the spider orchids it takes 2 – 5 years to reach maturity and then has a potential reproductive life of 10 years. With an average pollination rate of less than 10%, the potential to increase the population is low and any threat to survival of the individual plants needs to taken seriously.

Some threats are obvious such as weed invasion including the garden escapees such as Topped lavender (Lavandula stoechas spp. stoechas) and action is being taken to curb the spread of weeds through targeted weeding programs.

Another threat is habitat loss. This has been the result of land clearing but sites are being protected either through conservation legislation or Heritage Agreements. Habitat loss can also occur indirectly and that is through Phytophthora being introduced into the sites. Although the direct effect of Phytophtora on the orchid is unknown, it is known that it can affect the plants that grow in association with this orchid. This threat can be reduced by all of us implementing good hygiene practices.

These were some of the threats noted in the Recovery Plan. This plan was not just defensive, ie attempt to halt and minimalize the damage; but it was also proactive with measures outlined to increase the population. These included seed and fungi collection eventually resulting in germination and cultivation with a view to re-introduction.

It is good to see that there is a plan and active steps are being taken to bring this orchid back from threat of extinction.

June 2015 other entrants
Photographers from L to R: Claire Chesson, Rosalie Lawrence, Lorraine Badger, Robert Lawrence

References

Websites accessed 1 July 2015

White Beauty Spider Orchid (Caladenia argocalla) Recovery Plan
http://www.environment.gov.au/archive/biodiversity/threatened/publications/recovery/c-argocalla/index.html
Caladenia argocalla – White-beauty spider-orchid, biodiversity species Profile and Threats Database
http://www.environment.gov.au/cgi-bin/sprat/public/publicspecies.pl?taxon_id=54991
Recovery Plan For twelve threatened Orchids in the Lofty Block Region of South Australia
http://www.environment.gov.au/system/files/resources/e362cfd2-a37b-443a-b007-db3a2b7b64dd/files/lofty-block-orchids-recovery-plan.pdf

Bates R J, South Australia’s Native Orchids 2011 DVD

2015 May Winning Photograph

05 sm PM Diuris hazeliae

Western Australia produces a lovely array of orchids and so it is not surprising to find in NOSSA photograph competitions that when a Western Australian species is entered it can often be the winner. This month was no different with Pauline Myers beautiful picture of a mass of Diuris hazeliae which was kindly identified by Andrew Brown.

This species has only recently been named in 2013 and as a result finding information was a challenge. Obviously there was no information in Jones Native Orchids of Australia (2006); and surprisingly the definitive Field guide to the Orchids of Western Australia (2013) A Brown et al did not appear to have any information.

But

  • the Western Australian Herbarium’s FloraBase (Western Australian Flora), has a map of distribution which is roughly a diagonal line from east of Geraldton to the north of Esperance. It is not listed as threatened.

    Distribution of Diuris hazeliae.  Map taken from the Western Australian Flora Base
    Distribution of Diuris hazeliae. Map taken from the Western Australian Flora Base
  • the Western Australian Herbarium lists the species as one of 59 new taxa added to their plant census in 2014.
  • from the Atlas of Living Australia it can be deduced that the flowering time is mainly August and September and is likely to be found in various types of shrublands margins including Eucalypt and mallee woodlands and appears to be mainly associated with rocky or granite outcrops.
  • and the National Species List APNI/APC yields the information that it was named after Hazel King, plant collector and conservationist with a special interest in orchids and was previously known by the phrase name Diuris ‘northern granite’ with a common name of Rosy-cheeked Donkey Orchid. It was found in a granite outcrop on her property Tampu (north of Beacon).

Fortunately Andrew Brown was able to help with extra information. It is listed in his book (page 212) but under the phrase name Diuris sp. Eastern Wheatbelt (Yellow Granite Donkey Orchid). Diuris sp. Northern Granite was found to be the same species and so the use of that name was discontinued but it does remain a synonym for Diuris hazeliae.

The following description is information updated from his book “Field Guide to the Orchids of Western Australia”

Diuris hazeliae D.L. Jones & C.J. French (yellow granite donkey orchid)

Flowering: August to September.

Description:

A common, inland donkey orchid 100 to 300 mm high with two to three basal leaves 50 to 150 mm long by 5 to 10 mm wide and up to seven predominantly yellow, brown marked flowers 20 to 40 mm across. Flowers are characterised by their broad petals, very broad dorsal sepal, narrow, reflexed, usually crossed lateral sepals and tri-lobed labellum with broad, spreading lateral lobes and a broad, flattened to convex mid lobe.

Distribution and habitat:

Found between Mullewa, Salmon Gums and Balladonia, growing in shallow soil pockets on granite outcrops and along drainage lines below rocky breakaways.

Notes:

Named in 2013 from specimens collected at Tampu, north of Beacon in September 1997. The species often forms very large colonies on granite outcrops.

Distinctive features:

Inland granite and breakaway habitat.

Very broad dorsal sepal.

Diuris hazeliae is part of the Diuris corymbosa complex of which, in 2013, there were only 10 of the 26 Western Australian species formally named. This situation has now changed with 14 now formally named. As a final word, Diuris orientis is South Australia’s only member of this complex.

More images of this species can be seen on Retired Aussies website http://www.retiredaussies.com/ColinsHome%20Page/OrchidsWA/Diuris/Diuris%20sp%20northen%20granite/Diuris%20sp%20northern%20granite.htm

 

References – All websites accessed on 29th May 2015-06-04

https://florabase.dpaw.wa.gov.au/science/nuytsia/755.pdf

https://florabase.dpaw.wa.gov.au/browse/profile/44161

https://biodiversity.org.au/nsl/services/api/instance/apni/772000

Jones, Native Orchids of Australia and its Territories (2006)

Brown, Field Guide to the Orchids of Western Australia (2013)

2015 April Winning Photograph: Calochilus cupreus

04 sm HL Calochilus cupreusDespite having five very different but high quality photographs, Helen Lawrence’s photograph of Calochilus cupreus (Aldinga Bearded Orchid) was the clear winner with the vast majority of votes.

In South Australia it is considered endemic and endangered. Researching it was interesting. For instance, there is no mention of it in Jones extensive book (2006) yet it was named by R S Rogers in 1918 with a description appearing in Black’s Flora of South Australia (1922 edition), including a drawing by Rosa Fiveash. Between then and now there was a shift. In the Third edition of Black’s (1978) C. cupreus is absent but C. campestris present. In Bates and Weber 1990 the authors describe C. campetris (C. cupreus). Currently, the eflora of South Australia (the electronic version of 1986 Flora of South Australia) considers it a synonym of C. campestris. This is reflected in the Census.

It would appear that as C. campestris was studied and its variations documented (e.g. article by Jones 1976 Orchadian 5:83) the distinction with C. cupreus was lost. Clements and Jones (2006) state “Calochilus cupreus R.S.Rogers = Calochilus campestris” which means that they are not using C. cupreus. But in Jones’ book an anomaly occurs – he does not include South Australia in the distribution of C. campestris and as result Bates, from 2008, states that it is not recognized as occurring in South Australia.

Though C. cupreus disappeared from the literature the name still continued to be discussed amongst orchid enthusiasts. So when in 1995 NOSSA members found a distinctively different colony at Aldinga they identified it as Rogers’ C. cupreus.

Below is a chart, based upon Dr Rogers’ description, of some of the differences that made him consider C. cupreus a separate species:

C. cupreus C. campestris C. robertsonii
Shorter leaf

Rather rigid or fleshy erect triangular section

Longer leaf

Crescentic section

Longer leaf

Crescentic section

Base of labellum oblong glabrous (without hairs) with several raised longitudinal line Base of labellum round thickened, smooth no raised longitudinal lines Whole of labellum hirsute (hairy)
8 – 15 flowers About 8 flowers maximum About 8 flowers maximum

It will be interesting to watch what happens.

References

Bates personal communications

Bates & Weber (1990) Orchids of South Australia

Bates (2011) NOSSA South Australia’s Native Orchids

Bates (2005 to present) Orchids of South Australia CDs various editions

Clements and Jones An Australian Orchid Name Index (27/4/2006)

https://www.anbg.gov.au/cpbr/cd-keys/orchidkey/html/AustralianOrchidNameIndex.pdf

Jones (2006) A Complete Guide to Native Orchids of Australia

NOSSA Journal Vol 25 No 10 November 2001

Rogers R S Transactions of the Royal Society of South Australia V42 (1918) Pages 24, 25

http://www.biodiversitylibrary.org/item/113409#page/40/mode/1up

March 2015 Winning Photograph

Three winners; three very different orchids but that is typical of Australian Orchids, there is no one species that you can point to and say that is a typical orchid as illustrated by the the winners which were Sarchochilus falcatus (Kris Kopicki), Diuris palustris (David Mangelsdorf) and Simpliglottis valida synonym Chiloglottis valida (Pauline Meyers).

Sarchochilus falcatus (common name Orange Blossom Orchid) is an epiphyte.  03 KK sm Sarcochilus falcatus Mt Banda BandaThe cultivated plant in this photo originated from the Blue Mountains just north of Macquarie.  Epiphytic/lithophytic orchids are found across northern Western Australia through the Top End and from a narrow band down the east coast to Tasmania; that is in all States except South Australia.  About a quarter of Australian orchids are epiphytes and despite the widespread distribution, 90% of epiphytic orchids are found primarily in the rainforests of northeastern Queensland.

S. valida (common name Large Bird Orchid or Frog Orchid) 03 sm PM Chiloglottis validaand D. palustris (common name Little Donkey Orchid or Cinnamon Donkey Orchid) are terrestrial, the larger of the two orchid groups.03 sm DM Diuris palustris  Terrestrials are mainly found across the southern part of the continent with some occurring in the north and tropics.  Their optimal habitat is the various types of sclerophyll forests found in Australia.

There is some distribution overlap but the two groups mainly occupy different habitats.

Concerning the habitat of the two terrestrials, S. valida ranges from tall moist closed forest to shaded places of drier open forests to sphagnum bogs and in the mature pine plantations of the South East.  Whereas D. palustris occurs in wet and swampy habitats in the Eastern states (hence it is named from the Latin palustre meaning swampy), in South Australia it is not so. Instead it is found in open terrain of grassland, grassy woodland, mallee and shrubland.

Some Odd Facts:

S. valida is a small ground hugging plant the scape (flowering stalk) of which elongates to 10cm or more after pollination.  Click on this video link to see these plants ‘talking’.  In New Zealand it is described as a vagrant having been introduced from Australia.

Sarchochilus falcatus is the most common and widely distributed species of this genus in Australia.  Occassionally it is lithophytic (grows on rocks). Though it had been rated Endangered and downgraded to Vulnerable in 2005, it is still under major threat from illegal collecting, trampling, water pollution, weeds and fire. New Zealand has epiphytes and the common name for them is Perching Orchids.

D. palustris is uncommon in South Australia and Tasmania; and rare in Victoria.  D. palustris was one of the subjects painted by Adelaide colonial artist and cartoonist Margaret Cochrane Scott in 1890s who had an affinity for native orchids.

 

References:

All internet references accessed on 31st March 2015

https://www.anbg.gov.au/cpbr/cd-keys/orchidkey/html/intro-c_habitat.html

http://anpsa.org.au/APOL19/sep00-1.html

http://www.nativeorchids.co.nz/Species/Simpliglottis_valida.html

http://data.rbg.vic.gov.au/vicflora/flora/taxon/4cebc1f9-38da-4c61-9c3c-37c2efc6da32

Mark Clements The Allure of Orchids 2014

http://www.iucnredlist.org/details/44392876/0

Bates 2011 South Australia’s Native Orchids DVD

2015 February Winning Photograph

02 CC Thelymitra glaucophylla sm

The number of photographs may have been few but the quality was present. The clear winner was Claire Chesson’s Thelymitra glaucophylla (Glaucous Leaf Sun Orchid). Flowering from October to December, this endemic grassy woodland species of the ranges was only published in 2013 by Jeff Jeanes in the Mulleria 31:3 – 30 (2013) but it had been recognized much earlier by Bob Bates and has appeared with this name in his electronic Orchids of South Australia since 2005. It belongs to the T. nuda complex, of which there are 15 species, six of them having only been published in 2013. This complex is characterised by having large scented blue multiple flowers that open freely.

Not seen in this picture is the leaf and though the leaf is highly variable – 10-50cm long, 8-20mm wide, erect and short, long and flaccid, Jeanes mentions that T. glaucophylla “can be identified with a high degree of confidence from the mature leaves alone” (Page 4 Vol 31, 2013 Mulleria). The main features of the leaf are grey-green glaucous ie white bloom and is often senescent (withered) at anthesis (full flowered). Of the T. nuda complex, T. megcalyptra is the most similar but its leaf is never glaucous and has a red base, as well as an earlier flowering time and habitat of plains and rock outcrops.

For more details on the other orchids in the T. nuda group see the post titled Those Blue Orchids Again … posted 30th January 2015 with the link to Jeanes article in the Muelleria

2014 November Photograph Competition Part 2

Part Two of the November competition consisted of photographs of insects on orchids. There was quite a range of insects but the winner was a draw between Cyrtostylis robusta (Winter Gnat Orchid) with an ant and Pterostylis curta (Blunt Greenhood) with a midge fly; both taken by Doug Castle.

With today’s technology it is not only easier to take crisp images but fine details can be seen particularly when enlarging the image. Hence when the pictures are enlarged it is possible to see hairs on the ant and feathered antennae on the midge fly.

With identifying orchids, it is often the detail that is important. Both of these orchids are distinctive and can be readily identified but it is good to examine why this is the case.

Pterostylis curta (Blunt Greenhood)
Pterostylis curta (Blunt Greenhood)

With the greenhood, there is enough detail to see that the dorsal sepal and lateral petals have united to form a galea, ie hood, and that the lateral sepals are semi-fused and erect resulting in lateral orifices (side gap) between the two structures. These are some of the features that separate Pterostylis* from the other greenhoods such as Diplodium, Speculantha and Taurantha. This becomes apparent when browsing through the greenhood photographs, pages 286 to 339, in Jones “A Complete Guide to Native Orchids of Australia”. Having established that the plant is a Pterostylis, the twisted labellum is diagnostic of a P. curta as it is the only one that is described with a twisted labellum. Although not all the identifying features are present, enough information is available in this picture for identification.

In contrast the photograph of the Cyrtostylis robusta only has sufficient data to confidently identify it as a Cyrtostylis species, having a distinctive labellum that is larger than the lateral sepals and petals. In South Australia there are only two species and according to Bates (2011), the distinguishing features between the two

Cyrtostylis robusta (Winter Gnat Orchid)
Cyrtostylis robusta (Winter Gnat Orchid)

appear to be the leaf, the bud and the labellum. In this picture, the angle of the image does not give a clear view of the labellum (it could possibly be damaged) and of course there is no bud or leaf. It is possible that the pale edges of the dorsal sepal may give a clue to species identification as C. reniformis has mainly darker buds than C. robusta. Obviously Doug was able to identify it from his observations of the other features not present in this photograph.

In summary, one image is not always sufficient for identification. As was discussed on the night, to confirm identification, orchids should always be photographed from more than one angle, including pictures of other parts of the plant.

*In South Australia, Pterostylis foliata is a possible exception as it has no obvious lateral orifice.

References

Jones, D.L., T. Hopley, S.M. Duffy, K.J. Richards, M.A. Clements & X. Zhang (2006) Australian orchid genera. An information and identification system. CSIRO Publishing: Collingwood, Vic.

Bates, R.J. (2011) South Australia’s Native Orchids. DVD-ROM. Native Orchid Society of South Australia Inc.: Adelaide.

Jones, D.L. (2006) A complete guide to native orchids of Australia, including the island territories. New Holland Publishers: Sydney.